
CUORE, CUPID and the Nature of Neutrino Mass

Pranava Teja Surukuchi 
Yale University 

June 18, 2020

BNL Seminar



Pranava Teja Surukuchi, BNL Seminar June 2020 

Neutrinos:  What We Know

2

• Neutral fermions interacting via weak force

• Thought to be massless 

• Oscillation experiments showed us that at 
least two of them are massive

• So far the absolute neutrino masses are not 
known 

PBS NOVA [1], Fermilab, Office of Science, 
United States Department of Energy, Particle Data Group
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Neutrino Mass Measurements
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Mass measurement paradigms: 

• Neutrino oscillations

• Cosmological

• Beta decay measurements

• Neutrinoless double beta decay

Phys. Rev. Lett. 123, 221802

New KATRIN limit 1.1 eV 

Cosmological

Kinematic

Oscillation

SN 1987A

Adapted from arXiv:0604021

Σm
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Cosmological

Kinematic

Oscillation

SN 1987A

Adapted from arXiv:0604021

Nature of Neutrino Mass

4

• Neutrino masses are at least 5 orders of 
magnitude smaller than other fundamental 
particles

• Nature of neutrino mass is unknown: 
Dirac vs Majorana

• The smallness of neutrino mass maybe tied 
to the Majorana nature of neutrino via See-
saw mechanism

• Neutrinoless double beta decay experiments  
can help identify if neutrinos are Majorana 
type 

~105
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Double Beta Decay
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• Two neutrons simultaneously convert 
to protons

• A few even-even nuclei can undergo 
double beta decay (νββ) when beta 
decay is energetically forbidden 

• Half-life (~1020 yrs) >> age of universe

• 35 naturally occurring isotopes capable 
of νββ

• Already measured for several isotopes 

-Osaka university
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Neutrinoless Double Beta Decay (0νββ)
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• Hypothesized nuclear process 

• Implies: 

• ν has Majorana mass term

• Lepton number violation

• Hints to matter-antimatter asymmetry

• 0νββ experiments measure half-life (or decay rate)  

• Constrain the ν mass and ordering

-Osaka university

Current exclusion 

Phase space factor

Nuclear Matrix elements 

Effective neutrino mass

α

Important to observe 0νββ in multiple isotopes 
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Searching for 0νββ
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Sensitivity in presence of BG: 

αS0ν

Isotopic 
abundance

Efficiency
Mass

Runtime

Energy 
resolution

Background

2νββ
0νββ

Not to scale

• Essentially a peak search at the Q value 
of the decay

Resolution and backgrounds play 

important role in sensitivity

-Osaka university
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CUORE Experiment
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• Primary Goal: Search for 0νββ decay in 130Te

• Design:

• 19 towers (total of 988 TeO2 crystals)

CUORE

9

Cryogenic Underground Observatory for Rare Events
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• Primary Goal: Search for 0νββ decay in 130Te

•Design:

• 19 towers (total of 988 TeO2 crystals)

• Large mass: 742 kg of TeO2 ,206 kg of 130Te 

• Low background goal: 10-2 cts/(keV. kg. yr)

• Energy resolution: Goal of 5 keV FWHM at Qββ

• High efficiency and duty cycle 

•Sensitivity:

• T0v1/2 ~ 9 x 1025 yrs (90% C.L) in 5 yrs

• mββ < 50-130 meV

CUORE
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Cryogenic Underground Observatory for Rare Events
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LNGS: Laboratori Nazionali del Gran Sasso

15

• Natural shielding from cosmic rays by a mountain of Gran Sasso  

• 3600 meter water equivalent overburden
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Isotope of Choice: 130Te

16

• 34 % natural isotopic abundance 

• Qββ (2528 keV) 

• > most γ natural radioactivity

• Background from 2νββ ~1/Q5 

• Isotope within the absorber

• Reproducible growth of high quality 
TeO2 crystals with low contamination

Isotopic Abundance [atomic %]
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Calorimetric Technique

17

• Each crystal:

• Absorber: 5x5x5 cm3 TeO2 crystal

• Operational temperature: ~10 mK

• Thermal coupling: PTFE holder

• Heater: Gain calibration 

• Sensor: Ge neutron transmutation doped (NTD) thermistor

Heater

Crystal temperature rises when energy is deposited

• Excellent energy resolution (~0.2% ΔΕ/E FWHM) 

• Detector response independent of particle type 

• Flexibility in 0νββ candidate choice
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CUORE Cryostat

18

• Multiple stage cryogen-free cryostat:

• Nested co-axial cylinders

• Pulse Tubes for cooling 40 K and 4 K stages

• Dilution Unit to cool rest of the stages  

• Total mass: ~30 ton

• 15 ton @ 4 K 

• 3 ton @ 50 mK

• 1 ton @ 10 mK

Low background cryostat needs to be maintained at low temperature with low vibrations
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Y-beam
Vibration isolation

Cryostat

H3BO3 panels
Lead

Polyethylene

Borated polyethylene

Main support plate

Concrete beams

Sand-filled columns

Concrete walls

Screw jacks

Movable platform

Seismic isolation

Low Background Experiment

19

• In addition to natural shielding from rock

• Passive lead, polyethylene, and H3BO3 shielding 

• 70 tonne of lead, 7 tonne of cold lead

• Careful material selection: Ancient Lead and low radioactive 
copper

• Strict radiopure controls

• Active background reduction from event selection

Roman lead ingots
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CUORE Development

20
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CUORE Installation

21

Summer 2016Gluing NTD and heaters

Assembling towers

Assembling full detector

Partially assembled detector



Pranava Teja Surukuchi, BNL Seminar June 2020 

CUORE Commissioning

22

• Cooldown: Started in Dec 2016

• 1 Month cool down

• First data in Jan 2017
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Early Detector Optimization

23

• Electronics and DAQ debugging

• Optimization of trigger thresholds

• Temperature scan

• Optimize thermal response of the 
detectors

• Noise and vibration control 

• Linear drives to control Pulse tubes

• Pulse tube phase scans

1.4 Hz
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CUORE Data Taking

24

• First two years of data taking has seen a lot of 
downtime 

• Vacuum leak repair 

• Upgrades to dilution system

• Install external calibration system

• Overall reduction in downtime: Continued 
stable data taking 

• Enhanced several data analysis techniques 
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External Detector Calibration System (DCS)

25

• Internal DCS: 

• 232 Th source

• All the way down to 10 mK

• Complicated deployment process  

• Interferes with cryogenic system 

• External DCS: 

• Installed in summer 2018

•  232 Th + 60Co sources outside the 300 K vessel

• Short deployment periods helps to increase uptime
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CUORE Run Time Breakdown

Background Calibration
Down Time NPulses
Setup Test

CUORE Run Time Breakdown

Data Taking 

26

• After detector upgrades, continues low downtime data taking

• 12 datasets completed, each dataset ~1 month long (916.9 kg-yr data collected)

• 7 datasets analyzed (372.5 kg.yr)

• Plan for continued data taking 
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Analysis Chain: Trigger

27

• Continuous data collected and saved 

• Offline retriggering possible for all datasets

•  Optimum Trigger (OT):

• Triggered when optimum filter based amplitude crosses a threshold

Lower trigger thresholds achieved using optimum trigger

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 
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Analysis Chain: Amplitude

28

• Amplitude of the pulses are evaluated using matched filter that 
maximizes signal-to-noise ratio

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 

Amplitude α Energy

Average pulse
Filtered pulse
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Analysis Chain:  Gain stabilization

29

• Gain is temperature dependent 

• Stabilize the gain against temperature drifts

• Use fixed energy heater pulses to stabilize gain

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 
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Analysis Chain: Energy

30

• Calibration data taken before and after each dataset 

• Uses peaks from 232Th+60Co chain

• Each crystal independently calibrated

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 
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Analysis Chain: Multiplicity

31

• Multi-site events typically come from radioactive contamination 

• Select M1 events for 0νββ dataset

• Eliminate Compton scatters, surface alpha contamination, and muons

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 

e-

e-

M1 Event 

e-

e-

M2 Event 
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Analysis Chain: Pulse Shape Analysis

32

• Use the shape of the signal pulse to identify pulses that deviate from nominal pulse

• Multi-dimensional distance based on six pulse shape parameters is defined  

• Acceptance criteria is defined by the distance of events from the centroid of 
distribution that maximizes experimental sensitivity

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 
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Analysis Chain: Blinding

33

• Salting: Randomly move a fraction of events from 208Tl at 2615 keV 
to Qββ  region and vice versa

• Original event energies saved for unblinding

• Unblinding after the full analysis procedure is finalized

Trigger

Amplitude evaluation

Gain stabilization

Energy calibration

Multiplicity cut

PSA

Blinding 
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Spectrum

34

Reconstructed Energy [keV]
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Post analysis cut spectrum 
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X-ray  
escape peak

2615+583-511

2615+X-ray

Compton 
 scatterFlat background
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Effective FWHM = 7.03 keV

Detector Response

35

• Response modeled based on a fit to 2615 208Tl peak  

• Main peak parametrized by 3 γ peaks, X-ray escape, 
flat background and Compton scatter distribution

• Fit performed over all channels in a tower

• Using the same line shape function, resolution and 
bias in energy extracted by fitting peaks in physics 
data 

• Extrapolate to Qββ

FWHM at 2615 keV in calibration data - 7.7 keV 

 FWHM at Qββ in physics data - 7.0 keV
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Efficiencies

36
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Fit Details

37

• Unbinned Bayesian fit over all datasets 

• Uses Bayesian Analysis Toolkit (BAT)

• Fit region [2490, 2575] keV 

• Systematics implemented as nuisance parameters

• Fits done separately on each dataset with and without systematics 
produces consistent results

Fit parameters:
• 0νββ decay rate @ 2527.518 keV
• 60Co sum peak amplitude
• 60Co sum peak position
• Background index (flat)

Systematics: 
• Analysis efficiencies
• Containment efficiency
• Energy scale
• Energy resolution
•  Qββ

• 130Te abundance
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Fit to ROI

38

Average BI from BG only fit = (1.38±0.07).10-2 
counts/(keV·kg·yr)  

Sensitivity:

• Bkg-only model used to generate MC datasets and 
fit them to signal + bkg model

•  Median exclusion sensitivity: T0ν1/2  = 1.7 · 1025  yr   

Results:

• No evidence of 0νββ Best fit decay = 0 yr-1 

• T0ν1/2 > 3.2 x1025 yr at 90% C.I

Phys. Rev. Lett. 124, 122501 
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Limit on Effective Majorana Mass

39

• T0ν1/2 > 3.2 x1025 yr at 90% C.I

• Probability of getting a stronger limit is ~3 %

• Assuming light neutrino exchange:  
mββ < 75 - 350 meV

• Uncertainities in nuclear matrix elements 
determines the range
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CUORE Summary

40

• Calorimetric detector with excellent resolution

• CUORE started data taking in 2017 

• Stable data taking since early 2019 at 50kg.yr/month 

• >917 kg.yr data collected so far 

• 372.5 kg.yr data analyzed

• Updated 130Te T0ν1/2 > 3.2 x1025 yr  and  
mββ < 75 - 350 meV

• Sensitivity (5 yr data taking):  
130Te T0ν1/2 > 9.0 x1025 yr   
mββ < 50 - 130 meV
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Backgrounds in CUORE

41

130Te Qββ
2528 keV

100Μο Qββ
3034 keV

208Tl γ
2615 keV

Dominated by γ Dominated by α

Backgrounds:

• Below 2615 keV dominated by γ

• Above 2615 keV, primarily from αs (U/Th 
contamination)

• Next dominant background muons

 Reducing backgrounds:

• Move to higher energy > 2615 keV

• Eliminate α backgrounds (By discrimination)

• Reduce muon backgrounds (Active veto)  

Reduce backgrounds to further improve sensitivity
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CUPID

42

~170 authors  
7 countries 
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CUPID: The Concept

43

• Measure heat and light from energy deposition: 
Heat is particle independent, but light yield depends on particle type

• Add a light detector to crystal

• Actively discriminate using measured light yield
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Prototype Demonstrators: Precursors to CUPID

44

CUPID-0:

• Located in the CUORE-0 cryostat at LNGS, Italy 

• 24 Zn82Se (95% enrichement) +2 ZnnatSe crystals 
- 5.17 kg of 82Se

• Ge light detectors and NTD thermistors

Phys. Rev. Lett. 123, 032501 EPJ C 80, 44 (2020)

CUPID Mo:

• Located in the LSM, France 

• 20 enriched Li2100MoO4 (97% enrichement) 
crystals 
- 2.26 kg of 100Mo   

• Ge light detectors and NTD thermistors
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Prototype Demonstrators: Precursors to CUPID
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CUPID-0 (5.29 kg.yr):

• Resolution of Qββ 20.05 ± 0.34 keV

• Background in ROI: 3.5×10 −3 cts/(keV.kg .yr )

•  T1/2 > 3.5×1024 yr  and mββ < (311 - 638) meV 

CUPID Mo (0.5 kg.yr):

• Resolution of 6.5 keV @ 2615 keV 

• No background events in ROI

•  T1/2 > 3.0×1023 yr

EPJ C 79, 583 (2019)

EPJ C 80, 44 (2020)

B. Schmidt

TAUP 2019
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CUPID Plans

46

• Use CUORE infrastructure 

•  Li2100MoO4 scintillating crystals

• Opportunity to explore more isotopes

• TeO2 

• ZnSe 

• Li2MoO4  

• CdWO4 

• Modest cost compared to the other next generation experiments

• Schedule driven by 100Mo enrichment (expected ~4 years)

• TDR and construction readiness for the end of 2021

• Pre-CDR available arXiv:1907.09376 CUPID Schematic

arXiv:1907.09376
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CUPID Sensitivity

47

CUPID Baseline: 

• Mass: 472 kg (253 Kg)  of Li2100MoO4(100Mo) for 10 yrs

• Energy resolution: 5 keV FWHM

• Background: 10-4 cts/keV.kg.yr

T1/2 ~1027 yrs

mββ ~ 12-20 meV
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CUPID Sensitivity

48

Conservative (Can build today) 
Discovery sensitivity T1/2 > 1.1×1027 yr (3σ)

CUPID Baseline: 

• Mass: 472 kg (253 Kg)  of Li2100MoO4(100Mo) for 10 yrs

• Energy resolution: 5 keV FWHM

• Background: 10-4 cts/keV.kg.yr

More R&D for further background reduction by  
radio purity and higher bandwidth sensors 
Discovery sensitivity T1/2 > 2×1027 yr (3σ)

Ultimate bolometer sensitivity:
1000 kg of 100Mo  

Discovery sensitivity T1/2 > 8×1027 yr (3σ)
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Summary

49

• Large scale calorimetric approach to search for 0νββ demonstrated using CUORE

• Ton scale cryogenic infrastructure and instrumentation demonstrated 

• Excellent energy resolution and background reduction demonstrated using CUORE 

• CUPID will perform one of the most sensitive searches for 0νββ
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CUORE Details 

51
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CUPID Background

52
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CUPID Sensitivity
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Mass Measurement Paradigms: Summary

54

Method Measurable 
mass term Current limit

Neutrino 
oscillations

Σ > 98 meV(68meV)
 for IO(NO)

Beta decay 
measurements

mβ < 1100 meV 
Σ < 3000 meV

Cosmological 
models Σ < 120 meV

Double beta 
decay 
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Spectrum
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Line shape fit
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Cooling power
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Neutrino Masses
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annurev-nucl-101918-023407
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Neutrino Masses
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Phys. Rev. D 96, 053001 

NO IO
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Statistical Test
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Contamination from tower components
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Detector Calibration System (DCS)
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• Six 232Th γ sources radioactive strings reaching down to 10 
mK between detector towers

Inner string Outer string 4 TeO2 crystals
in copper frameCopper shield

300 K

40 K

4 K

600 mK
50 mK

10 mK

Lead shielding

Detector towers

4 K Thermalizer

Source string
location before
calibration
(Motion Box)

Stainless steel
bellows

Inner guide
tube route
Outer guide
tube route
Detector region
guide tube
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Cooling
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Pulse tube
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Backgrounds in LNGS
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• μ’s: ~3 × 10-8 / (s⋅cm2)  

• γ’s: ~0.73 / (s⋅cm2)  

• neutrons: 4 × 10-6 /(s⋅cm2) below 10 MeV
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Posterior
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S  α η⋅ε M⋅tzero background case: M · t · b · ΔE < 1


